
Modelling and simulation of a group of mobile robots

Gregor Klančar *, Borut Zupančič, Rihard Karba

Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia

Received 7 February 2005; received in revised form 7 February 2007; accepted 8 February 2007
Available online 16 February 2007

Abstract

In this paper the mathematical background of the developed robot soccer simulator is presented. It involves robot and
ball dynamic behaviour and focuses mainly on their collisions study. Vital parts of the simulator are explained and mod-
elled in more detail, beginning with the simple model of ball and robot motion and continuing with a more complex
approximate collisions models, where the real robot shape is taken into consideration. Some new ideas of collision formu-
lation, realization and real robot shape inclusion are used. The implementation of the simulator is described and advan-
tages for the usage of the realistic simulator are stated.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Simulator; Multi-agent system; Collision detection; Modelling; Discontinuous simulation

1. Introduction

In this paper the mathematical background of the developed robot soccer simulator is presented. Robot
soccer has been a very popular research game and has served as a perfect example of multi-agent systems
in the last few years [3,11,12,16]. The main purpose of the simulator design procedure is to obtain a realistic
simulator which would be used as a tool in the process of strategy and control algorithms design for real world
robot soccer as well as for other mobile-robotics related topics. To assure transferability to the real system the
obtained strategy algorithms have to be designed on a realistic simulator.

The main motivation for robot soccer simulator development was to design and study multi-agent control
and strategy algorithms in FIRA Middle or Large League MiroSot category (5 against 5 or 11 against 11
robots). However, on FIRA’s (Federation of International Robot Soccer Association) official website
(www.fira.net) there exists a simulator for SimuroSot league, which could only be used in Middle League Mir-
oSot (5 against 5 robots). A similar simulator was built by Liang and Liu [9] where robot motion is simulated
by dynamic model, collisions remaining oversimplified. There also exist a number of other simulator applica-
tions but not many papers are available. An important part of every realistic robot soccer simulator is collision
modelling and simulation. Good mathematical background in rigid body collisions modelling and simulation

1569-190X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.simpat.2007.02.002

* Corresponding author. Tel.: +386 1 4768701.
E-mail address: gregor.klancar@fe.uni-lj.si (G. Klančar).

Simulation Modelling Practice and Theory 15 (2007) 647–658

www.elsevier.com/locate/simpat



could be found in [1,2]. Another useful contribution in the field of robotic simulator is [8] where collisions are
treated by spring-dumper approach rather than by impulse force only. The use of spring-dumper linkage in
collisions makes velocities changes continuous, which is less problematic for simulation than discontinuous
change of velocities [4] obtained by impulse usage. However, spring and dumper coefficients are not easy to
identify. Moreover, when observed from macroscopic time scale (as it is in simulation) collisions are indeed
discontinuous events.

Simulated robots should have a realistic shape, which should not be represented simply with a square (the
real shape of the robot is not a square) otherwise the simulation of ball guidance and other collisions becomes
unrealistic. Furthermore, some of the available robot soccer simulators do not treat collisions well, especially
the collisions among robots (robot corners), collisions between robot and boundary and situations where the
ball is in-between two robots or robot and boundary. Algorithms on such simulators are also not transferable
enough to the real system. A majority of them is used for competitions in simulation league and these simu-
lators do not need to be realistic.

With a rapid progress of computer graphics used in computer games, animated movies and other purposes
a number of physics engines have appeared which can realistically simulate rigid body dynamics considering
variables such as mass, inertia, velocity, friction, etc. Some of available physics engines are ODE – Open
Dynamics Engine, Ageia physX, AERO, Karma in Unreal Engine and many others. Their usage enables com-
puter simulations, animations and games such as racing games to appear more realistic. Depending on their
usage there exist two types of physics engines, namely real-time and high precision. When dealing with inter-
active computing (e.g. video games), the physics engines are simplified in order to perform in real-time. On the
other hand high precision physics engines require more processing power to be able to calculate very precise
physics and are usually used by scientists and computer animated movies. Some of physics engines are free and
open source. As such they can also be used to simulate physics in different research oriented experiments.
These packages are usually comprehensive and therefore quite difficult to manage, use and modify. When con-
structing the mobile robot its mathematical background was completely developed by our team, which
enabled us to get a better insight into the problem domain and gave us the possibility to efficiently solve some
simulator specifics as mentioned in the sequel.

The presented simulator is mainly used as a tool in control and strategy design of multi-agent system in real
game and therefore needs to be realistic. Strategy design could be developed also on a real plant but there are
some important reasons which benefit the usage of realistic simulator as stated in the paper. Some vital parts
of the simulator are explained and modelled in more detail, beginning with the kinematics and dynamic
motion modelling considering kinematics constraints and, further on dealing with different collisions model-
ling. The stress is given to the motion modelling where the assumptions of pure rolling conditions are made
and dynamic properties are included. The results of this part are motion models of the ball and the robot with
differential drive. Some new ideas of collision formulation and realization (taking into account the real robot
shape) are used as well. Collisions are simply solved by mathematically correct discontinuous change of veloc-
ities (states of the velocity integrators), which is more convenient for realization than simulating collisions by
applying impulse force [1,8]. However, collisions are only described by approximate models, which are suffi-
cient enough for realistic behaviour of the obtained simulator. Precise collisions modelling is usually very
demanding because of many factors, which should be considered during collision. When simulating a realistic
game a precise collision modelling is less important than motion modelling. This is because the game strategy
is designed to play a good game where different collisions are undesired and we want to avoid them. Never-
theless collisions still happen and have to be handled. The problems of collision detection and the method of
finding the exact time of the collision are exposed too. For the latter the existing algorithms in Matlab Sim-
ulink are used.

The system presented in this paper is available for other researchers. It can be used for mobile-robot related
experiments, such as multi-agent strategy design, agent behaviour analysis, robot motion planning, coopera-
tion, collision avoidance, motion planning, control and the like. The presented simulation is available at our
website [6].

The paper is organized as follows. First, a brief system overview is revealed, followed by the mathematical
model derivation of basic agents (robots and ball). Then some new ideas of collisions modelling considering
complex robot shape are presented in more detail. The conclusions are given in the final part of the paper.

648 G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658



2. System overview

The robot soccer set-up (see Fig. 1) consists of 10 Middle League MiroSot category robots (generating two
teams) of size 7.5 cm cubed, orange golf ball, rectangular playground of size 2.2 · 1.8 m, colour camera and
personal computer. Colour camera is mounted above playground (each team has its own) and is used as a
global motion sensor. The objects are identified from their colour information; orange ball and colour dresses
of robots. The agent-based control part of the programme calculates commands for each agent (robot) and
sends them to the robot by a radio connection. The robots are then driven by two powerful DC motors;
one for each wheel.

The role of the simulator developed in the paper is to replace the real playground, camera, robots and ball,
which is expensive and needs a large place to be set up. Therefore the simulator must include mathematical
models of motion as well as collisions which happen on the playground.

3. Mathematical modelling

To simulate robot soccer game mathematic motion equations should be derived first. The playground activ-
ities consist of two kinds of moving objects: robot and ball. Therefore their motion modelling [10] is presented
in the sequel.

3.1. Robot model

The robot has a two-wheel differential drive located at the geometric centre, which allows zero turn radius
and omni-directional steering because of nonholonomic constraint [7]. It is an active object in the robot soccer
game. Its appearance is given in Fig. 2 and its motion is described in the sequel by kinematics and dynamic
motion equations.

Where To = (xo,yo) is robot geometric centre, Tc = (xc, yc) is its mass centre, mc is body mass, mk is wheel
mass and Jc, Jk, Jm are moments of inertia for robot body around axis Z, for wheel around its axle and wheel
around axis Z, respectively. Supposing pure rolling conditions of the wheels, the following kinematics con-
straints can be written:

_yc cos h� _xc sin h� _hd ¼ 0

_xc cos hþ _yc sin hþ b _h ¼ r _/r

_xc cos hþ _yc sin h� b _h ¼ r _/l

ð1Þ

where h is the robot orientation, /r and /l are the angles describing wheels rotation and d is the distance be-
tween mass centre and geometric centre. According to the first constraint in Eq. (1), the robot cannot slide in
the sideways, while the second and the third constraints describe pure rolling of the wheels. The null space of
kinematics constraints (1) defines robot kinematics motion equation, given as:

Fig. 1. Robot soccer system overview.

G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658 649



_xc

_yc

_h
_/r

_/l

2
6666664

3
7777775
¼

r
2b ðb cosðhÞ � d sinðhÞÞ r

2b ðb cosðhÞ þ d sinðhÞÞ
r

2b ðb sinðhÞ þ d cosðhÞÞ r
2b ðb sinðhÞ � d cosðhÞÞ

r
2b � r

2b

1 0

0 1

2
6666664

3
7777775
�

_/r

_/l

" #
ð2Þ

Dynamics motion equation can further be derived using Lagrange formulation [17]

d

dt
oL
o _qk

� �
� oL

oqk

þ oP
o _qk
¼ fk �

Xm

j¼1

kjajk ð3Þ

the last part of Eq. (3), kj are Lagrange multiplicators associated with jth (j = 1, . . ., 3) constraint equation and
ajk is kth (k = 1, . . ., 5) coefficient of kth constraint equation. Lagrangian is defined as:

L ¼ mc

2
ð _x2

c þ _y2
cÞ þ

mk

2
ð _x2

kr
þ _y2

kr
Þ þ mk

2
ð _x2

kl
þ _y2

kl
Þ þ þ J c

2
_h2 þ 2

J m

2
_h2 þ J k

2
_/2

r þ
J k

2
_/2

l ð4Þ

Defining m = mc+2mk, J = Jc+2Jm+2mk(d2 + b2) and expressing (4) by robot mass centre variables the fol-
lowing is obtained:

L ¼ m
2
ð _x2

c þ _y2
cÞ þ

J
2

_h2 þ J k

2
_/2

r þ
J k

2
_/2

l þ 2mk d _hð _xc sin h� _yc cos hÞ ð5Þ

According to (3) the dynamic model is written as:

m€xc þ 2mkdð€h sin hþ _h2 cos hÞ � k1 sin hþ ðk2 þ k3Þ cos h ¼ 0

m€yc � 2mkdð€h cos h� _h2 sin hÞ þ k1 cos hþ ðk2 þ k3Þ sin h ¼ 0

J€hþ 2mkdð€xc sin h� €yc cos hÞ � k1d þ ðk2 � k3Þb ¼ 0

J k
€/r þ l _/r � k2r ¼ sr

J k
€/l þ l _/l � k3r ¼ sl

ð6Þ

where k1, k2, k3 are Lagrange multiplicators which can effectively be eliminated by the procedure given in
[14,15]. Brief summary is given in the sequel. Lagrangian formulation (3) can be expressed in matrix form,
such as:

MðqÞ€qþ Vðq; _qÞ þ Fð _qÞ ¼ EðqÞu� ATðqÞk ð7Þ
where M(q) is inertia matrix, V(q, _qÞ is vector of position and velocity dependent forces, Fð _qÞ is vector of fric-
tion or dumping forces, E(q) is input transformation matrix, u is input vector of actuator forces and torques
and A(q) is the matrix of kinematics constraints. System kinematics from Eq. (2) expressed in matrix form
reads:

Fig. 2. Symbol description.

650 G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658



_q ¼ SðqÞvðtÞ ð8Þ
and matrix form of kinematics constraints from Eq. (1) is

AðqÞ _q ¼ 0 ð9Þ
Calculating first derivative of (8) gives

€q ¼ _Svþ S _v ð10Þ
Lagrange multiplicators can finally be eliminated by substituting (8) and (10) in Eq. (7) and pre-multiplying by
ST. The part with Lagrangian multiplicators vanish because ST AT = 0.

The dynamics of electric part (the motors) can usually be neglected, as electrical time constants are usually
significantly smaller than mechanical time constants.

3.2. Ball model

The ball is a passive object whose motion across the playground can be described by five generalized coor-
dinates as shown in Fig. 3.

Dynamics motion equation can be derived using Lagrange formulation

d

dt
oL
o _qk

� �
� oL

oqk

þ oP
o _qk
¼ f ðtÞ ð11Þ

where L stands for difference between kinetic and potential energy, P stands for power function (dissipation
function), qk stands for generalized coordinate and f(t) is external force respectively and is nonzero when the
ball collides. Lagrangian is defined as

L ¼ 1

2
mð _x2 þ _y2Þ þ 1

2
Jð _u2

x þ _u2
y þ _u2

z Þ ð12Þ

where m is the ball mass and J is moment of inertia. Supposing pure rolling conditions the following kinemat-
ics constraints follow:

_xþ r _uy ¼ 0

_y � r _ux ¼ 0
ð13Þ

where r is ball radius. Both conditions in Eq. (13) give perfect rolling of the ball, i.e. motion with no slipping.
Constraints in Eq. (13) are holonomic (integrable) and can be used to eliminate two generalized coordinates.
Further on, by neglecting rotation around z axis xz = 0 and using constraints (13), Eq. (12) is rewritten as

L ¼
mþ J

r2

2
ð _x2 þ _y2Þ ð14Þ

Fig. 3. The ball rolling on the plane.

G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658 651



The power function is

P ¼ 1

2
fD _x2 þ 1

2
fD _y2 ð15Þ

where fD is dumping coefficient. Considering (11) the final motion equation of the ball are as follows:

€x ¼ F ðtÞ � _x � fD

mþ J=r2

€y ¼ F ðtÞ � _y � fD

mþ J=r2

ð16Þ

4. Collisions modelling

During the motion of the robots and the ball on the playground several collisions between them are pos-
sible. They are given as submodels and describe the collision between moving objects: the robot–ball collision
model, the robot–boundary collision model, the ball–boundary collision model and the collision between
robots model. When simulating a realistic game, a precise collision modelling is less important than motion
modelling. This is because the game strategy is designed to play a good game where different collisions are
undesired and we want to avoid them. Nevertheless collisions still happen and have to be handled. However,
in the sequel the collision models only approximately describe real situations. Most of the presented models
are therefore relatively simple for realization in a simulator.

4.1. Robot–boundary collision

When modelling collision of the robot to the boundary, the test whether all robot corners are inside the
playground must be performed first. If they are, this means that there is no such collision. The procedure
is represented by diagram in Fig. 4.

Fig. 4. Robot–boundary collision simulation diagram.

652 G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658



The notation differential equation (1) in Fig. 4 stands for Eq. (3). When the robot hits the boundary with
two corners, it stops and so robot kinematics equation (in Fig. 4 marked as differential equation (2)) becomes:

_x

_y

_u

2
64

3
75 ¼

0

0

0

2
64
3
75 ð17Þ

More demanding case appears when the robot hits the boundary with one corner only. If the angle between
the robot and the boundary is greater than the proposed threshold value, the robot starts to rotate around the
corner (see Fig. 5).

The velocity in point TK with tangential direction to the outer circle in Fig. 5 is obtained by a transforma-
tion of the left wheel rim velocity (xL Æ r). Angular velocity xTK in point TK is thus

xT K ¼
xL � r � cosðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ L2=4
p ð18Þ

where angle a is

a ¼ arctg
L=2

L

� �
ð19Þ

and linear velocity of the robot centre (vTs) is:

vT S ¼ xT K

ffiffiffiffiffi
L2

2

s
¼ xLr

ffiffiffi
2

5

r
cosðaÞ ð20Þ

Robot kinematics equation (in Fig. 4 marked as differential equation (3)) then becomes:

_x

_y

_u

2
64

3
75 ¼

ffiffi
2
5

q
� r � cosðaÞ � cosðuþ p

4
Þ 0ffiffi

2
5

q
� r � cosðaÞ � sinðuþ p

4
Þ 0

�
ffiffi
4
5

q
� r

L � cosðaÞ 0

2
66664

3
77775 �

xL

xR

� �
ð21Þ

If the angle between the robot and the boundary is less than the mentioned threshold, the robot slides along
the boundary (see Fig. 4).

4.2. Ball–boundary collision

In the ball–boundary collision elastic collision is supposed. The velocity component parallel to the bound-
ary remains the same, while the perpendicular velocity component changes sign and is multiplied by a factor

Fig. 5. One-corner collision with the boundary.

G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658 653



less than one, representing energy loss. To assure proper rebound without penetration, zero crossing algorithm
implemented in Matlab Simulink environment is used to treat the problem of integration over discontinuities
correctly and efficiently. This algorithm simply changes the integration step by bisection, according to some
input variable (distance between ball and boundary multiplied by sign which is negative if the ball is outside
the playground), until the exact time of discontinuity appears.

4.3. Robot–ball collision

Mutual impact of the robot and the ball can be described with collision model of two spheres (Fig. 6).
Mathematically the model is based on kinetic energy and momentum balance equations as follows:

m1v2
x1
þ m2v2

x2
þ m1v2

y1
þ m2v2

y2
¼ m1w2

x1
þ m2w2

x2
þ m1w2

y1
þ m2w2

y2

m1vx1
þ m2vx2

¼ m1wx1
þ m2wx2

m1vy1
þ m2vy2

¼ m1wy1
þ m2wy2

ð22Þ

where indexes 1 and 2 stand for the first and second sphere, v represents the velocities before and w the veloc-
ities after the collision, while m1 is robot and m2 ball mass respectively.

The playground coordinate system is rotated so that axis x connects mass centres of the spheres (see Fig. 6).
Because of the coordinate system rotation the impact force is different from zero only in normal direction of

the collision, i.e. direction x. Thus the velocities in direction y remain the same. Final non-trivial velocities
after the collision are then given by:

wx1
¼ �m2vx1

þ m1vx1
þ 2m2vx2

m1 þ m2

wx2
¼ 2m1vx1

þ m2vx2
� m1vx2

m1 þ m2

wy1
¼ vy1

wy2
¼ vy2

ð23Þ

where index 1 stands for the robot and index 2 stands for the ball. If m2 is very small in comparison with m1, a
simplification of Eq. (23) is justified. Some manipulations give:

wx1
¼ vx1

wx2
¼ vx1

þ kðvx1
� vx2

Þ
wy1
¼ vy1

wy2
¼ vy2

ð24Þ

Fig. 6. Collision of two spheres.

654 G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658



Furthermore, energy loss is realized by multiplying the part of Eq. (24) inside the brackets by factor k less than
one.

Calculated velocities after the collision are then used as new initial states of the integrators in the simulator.
This is equivalent to applying and simulating impulse force caused by collision but is less suitable for realiza-
tion [10,13].

However to assure a realistic collision of the robot and the ball, a concrete robot shape has to be modelled.
The actual robot shape is shown in collision situation in Fig. 7 and the idea of how to include the real robot
shape into the model is given in Fig. 8.

The outer shape is the rim of the robot obtained if the ball is rolled around the robot and its positions are
recorded. With the proposed reshaping the collision of the robot with the ball can be treated as a collision
between two points (ball centre and point on robot rim). Because linear and angular velocities of the robot
are given for geometrical centre, the following transformations have to be done in order to obtain the veloc-
ities in the point of the rim where the collision with the ball occurs:

vx1
¼ v� xrðuÞ sin u

vy1
¼ xrðuÞ cos u

ð25Þ

Function r(u) is the distance from the robot centre to the collision point on the rim and u is the angle from the
local robot axis x to the line connecting the robot centre and the collision point. To solve Eq. (23) the play-
ground coordinates are rotated first so that axis x is in tangential direction of the rim (in the point of collision).
After that the collision results are transformed to the global coordinates.

The shape of the robot is described with two look-up tables (distance r(u) and tangent(u) of the rim),
which are addressed with angle u. To detect if the ball hits the robot, a check of the distance between
their centres must be performed. If the distance is less than the one obtained from look-up table r(u),
the ball hits the robot. The accurate time of the collision is again obtained by zero crossing algorithm.
So proper collision without penetration (within machine precision) and accurate integration over velocities
are assured.

4.4. Collisions between robots

The collision of two or even more robots is undoubtedly problematic from the modelling point of view.
However, the complexity of the model must be strongly dependent on the demands of the realistic simulator,
where the compromise between reality approximation and simulation precision must be found according to
the simulation usage aims. During simulator design a few more or less approximate solutions were tested until
finally the best one was implemented. When designing the control strategy of the robot soccer game, it seems
that collisions between robots are not so important because one focuses mainly on shots on goal, on passes,

Fig. 7. Robot–ball collision.

G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658 655



organizing defence and similar actions, while collisions between robots are more or less undesired. However,
collisions between robots are quite frequent in the game and in the case of defence also very important. There-
fore they must be treated correspondingly in a realistic simulator.

4.4.1. Collision detection

A collision detection algorithm [5] consists of two steps. In the first step only the information about a pos-
sible collision is obtained. The second step is then performed only if the possibility obtained from the first step
exists. In the second step a separating plane between objects is found. The reason for performing collision
detection in two steps is only due to lower computational burden. Thus, the second step is performed only
in situations where collision is almost inevitable.

The first step is performed by analyzing bounding boxes of all robots. The latter have their sides parallel to
the global coordinate axes, thus representing the rectangle in which robot in its current position is included
(see Fig. 9). The possibility of two objects colliding exists only if the bounding boxes overlap. The overlapping
between two bounding boxes is determined by checking if their sides overlap in both axis directions (x and y)
at the same time.

As mentioned before the second step is performed only if the overlapping of bounded boxes from the first
step exists. The separating plane is calculated so that one object (convex polyhedrons) is on one side of the
plane and the other on another side of the separating plane. The separating plane always exists if two objects
do not invade.

Fig. 8. Shape of the robot (inner) and its rim.

Fig. 9. Overlapping of bounding boxes in both directions.

656 G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658



4.4.2. Collision realization

In a two-dimensional space the separating plane is a straight line. It is convenient that the separating plane
has a normal in the same direction as is the normal direction of collision. A separating plane should thus con-
tain the side of one of the two objects which are involved in collision (see Fig. 10).

When a collision of two robots appears, the following holds:

D~G ¼
Z
~F dt ð26Þ

where ~G stands for conservation of momentum and ~F dt is force impulse acting at the time of collision. Be-
cause of the force impulse a sudden change in velocities of the two robots occurs. Force impulse acts only
in normal direction of the collision. Thus only the velocity components in the normal direction of the collision
change while perpendicular components remain the same. To calculate the new velocities of the robots after
collision the force impulse ~J ¼ ~F Dt has to be calculated. The detailed procedure to estimate the velocities of
two rigid bodies after collision is described in [1,5]. The idea is to calculate the relative velocities in the collision
point~p (see Fig. 10) before and after the collision in normal direction. It is always true that the absolute value
of the relative velocity in normal direction after the collision remains the same compared to the absolute value
of the relative velocity in normal direction before collision in point ~p. From that property the amplitude of
force impulse can be calculated. Having estimated the impulse, linear velocity ~vþ and angular velocity ~xþ

for robot mass centre can be calculated by using relations:

~vþðt0Þ ¼~v�ðt0Þ þ
~Jðt0Þ

M
~xþðt0Þ ¼ ~x�ðt0Þ þ I�1ð~r �~Jðt0ÞÞ

ð27Þ

where t0 is time of the collision, M is mass of the robot, I is corresponding moment of inertia and~r is a dis-
placement vector between mass centre~x and point of collision~p (see Fig. 10), while the sign in the superscript
denotes time instant of the collision (� before and + after collision). To obtain accurate t0 again, a zero cross-
ing algorithm could be used in order to assure accurate integration of discontinuous velocities signals. How-
ever, the problem of high frequency oscillations around a discontinuity (chattering) appears when two or more
robots stay in contact (robots pushing each other). Therefore sampling time of the simulation becomes very
small, which results in halting of the simulation. Thus, a better solution is to check for a correspondingly small
distance between one robot corner and the separating plane belonging to another robot. If the separating
plane does not exist, the time of the penetration must be taken into account. The obtained velocities after
the collision are then used to determine new initial states of the integrators in the simulator, which is equiv-
alent to simulating impulse force because of the collision. The former is more suitable and accurate for real-
ization, though.

Fig. 10. Collision of two robots.

G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658 657



5. Conclusion

The introduced simulator is mostly used as a tool in the process of strategy and control design for real robot
soccer game. Therefore, its verification is done through transferability of the obtained strategy algorithms to
the real system. The verification shows that the behaviour of the simulator is similar enough to the real setup,
which means that the designed algorithms (strategy and low level control) can directly be used without mod-
ifications in real games as well.

The designed simulator has significant improvements in comparison with the available simulator in Miro-
Sot leagues (simulator for SimuroSot) and other available simulators; the advantages being dynamics motion
modelling and a realistic shape of the robots, which contributes to a more realistic simulation of robot ball
interactions, collisions with robots, robots and boundary interactions and the situations where the ball is cap-
tured between two objects (it cannot invade any object). The presented simulator proved to be a good approx-
imation of the real system. The motion models as well as collision models give realistic descriptions, which
enable the simulator designed algorithms to be used on the real system.

References

[1] D. Baraf, An introduction to physically based modeling: rigid body simulation II – nonpenetration constraints, in: SIGGRAPH ’97
Course Notes, Carnegie Mellon University, 1997.

[2] O. Egeland, J.T. Gravdahl, Modeling and Simulation for Automatic Control, Marine Cybernetics, Trondheim, Norway, 2002.
[3] J. Ferber, Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence, Addison-Wesley, Essex, England, 1999.
[4] M. Fremond, Rigid bodies collisions, Physical Letters A 1 (1995) 34–41.
[5] G. Klančar, M. Lepetič, R. Karba, B. Zupančič, Robot soccer collision modelling and validation in multi-agent simulator,

Mathematical and computer modelling of dynamical systems 9 (2) (2003) 137–150.
[6] G. Klančar, Mobile Robot Simulator, <http://msc.fe.uni-lj.si/PublicWWW/Klancar/RobotSimulator.html>.
[7] I. Kolmanovsky, N.H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems 15 (1995) 20–36.
[8] E. Larsen, A Robot Soccer Simulator: A Case Study for Rigid Body Contact, Sony Computer Entertainment America R&D, March

2001.
[9] T.C. Liang, J.S. Liu, A distributed mobile robot simulator and a ball passing strategy, Technical Report TR-IIS-02-007, Institute of

Information Science, Academia Sinica, Nankang, Taiwan, 2002.
[10] D. Matko, R. Karba, B. Zupančič, Simulation and Modelling of Continuous Systems, A Case Study Approach, Prentice-Hall,

Englewood Cliffs, USA, 1992.
[11] A. Minoru, R. D’Andrea, A. Birk, H. Kitano, M. Veloso, Robotics in edutainment, in: Proceedings of the 2000 IEEE International

Conference on Robotics and Automation (ICRA’2000), San Francisco, USA, 2000, pp. 795–800.
[12] S. Moss, P. Davidsson, Multi-Agent-Based Simulation, Springer-Verlag, New York, 2002.
[13] The Math Works, Inc., Simulink, Dynamic System Simulation for Matlab, Natick, USA, 1998.
[14] G. Oriolo, A. Luca, M. Vandittelli, WMR control via dynamic feedback linearization: design, implementation, and experimental

validation, IEEE Transactions on Control Systems Technology 10 (6) (2002) 835–852.
[15] N. Sarkar, X. Yun, V. Kumar, Control of mechanical systems with rolling constraints: application to dynamic control of mobile

robot, The International Journal of Robotic Research 13 (1) (1994) 55–69.
[16] P. Stone, M. Veloso, Multiagent systems: a survey from a machine learning perspective, Autonomous Robots 8 (2000) 345–383.
[17] D.A. Welles, Lagrangian Dynamics, Schaum’s Outline Series, McGraw Hill Book Company, 1967.

658 G. Klančar et al. / Simulation Modelling Practice and Theory 15 (2007) 647–658




